
AD-AI46 923 FUNCTIONAL SEMANTICS OF MODULES(U) MRRYLRND UNIV i/i
COLLEGE PARK DEPT OF COMPUTER SCIENCE J GANNON ET AL
SEP 84 CS/E-84-085 AFOSR-TR-84-8879 F49628-88-C-8884

UNC LRESSIFIED F/G 9/2 NLE7thhhlL

llllI

p1.

I,.,. -1112.

1.2111A 1111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAUj Of STAN3ARDS- 963A

4..

w . ..
,. -. . - - -

AFOSRTR. 84.0879

r
r

Technical Report CS/E 84-005 September, 1984

FUNCTIONAL SEMANTICS OF MODULES

..I John Gannon

a-,. University of Maryland

Dick Hamnlet
Oregon Graduate Center

Harlan Mills
University of Maryland

DTIC
ELECTE

I OCT 0 30 1984

8 OREGON GRADUATE CENTER

I~l h4lt1lrbution unlimited.
19600 N.W. WALKER ROAD

,. 4 BEAVERTON, OREGON 97006

*.1

V.._.,

NTIS C''~iDTIC T- [
Unannounced

," Jus t ifitt. ...

Technical Report CSIE 84-005 September, 1984

FUNCTIONAL SEMANTICS OF MODULES

John Gannon
University of Maryland

Dick Hamlet
Oregon Gradtate Center

- Harlan Mis"

University of Maryland Lo d A %.-oSELECTE
OCT 3 0 1984j

Abstract D
*~- 1Because largc-scale software development is a struggle against internal program complexity,

the modules into which programs are divided play a central role in software engineering. A
module encapsulating a data type allows the programmer to ignore both the details of its
operations, and of its value representations. It is a primary strength of program proving that
as modules divide a program, making it easier to understand, so do they divide its proof.
Each module can be verified in isolation, then its internal details ignored in a proof of its use.
This paper describes proofs of module abstractions based on the functional method of Mills,
and contrasts this with the Alphard formalism based on Hoare logic.

Authors' addresses: Dr. Hamlet, Department of Computer Science, Oregon Graduate
Center, Beaverton, OR 97006; Ds. Gannon and Mills, Department of Computer Science,
University of Maryland, College Park, MD 20742. Research of Drs. Gannon and Hamlet
was partially supported by the Air Force Office of Scientific Research under contract
F49620-80-C-0004.

AIR 7ORC0VFinR 0CTE1t77TCXV~kM f 'w"'
,.NOTICE ,.? -z -.... TO DT1 C

Thistcc. *-. . i

appr'ove! - * ~.~

MATTHEW J.
Chief, Teohnical Information Division

1. Introduction

K Modules that encapsulate complex data types are perhaps the most irtant sequential
programming-language idea to emerge since the design of ALGOL 60. Such a module serves
two purposes. Frst, in its abstraction role, it allows the programmer to ignore the details of

"' operations (procedural abstraction) and value representations (data abstraction) in favor of a
*' concise description of their meaning. Second, encapsulation is a protection mechanism

isolating changes in one module from the rest of a program. The first role helps people to
S think about what they are doing; the second allows program changes to be reliably made with

limited effort.

Modules have their source in practical programming languages beginning with SIMUA
[1), and their theory has developed in two directions, based on program proving by Hoare [2],
Wulf, London, Shaw [3] and others; and on many-sorted algebras by Guttag [4], Goguen,
Thatcher, Wagner, Wright [5] and others. This paper reports on a new proving theory using
the functional semantics of Mills [6].

-* The essence of data-abstraction is captured by a diagram showing the relationship
between a concrete world, the objects manipulated directly by a conventional programming
language, and an abstract world, objects that the programmer chooses to think about instead
of the more detailed program objects. Within each world, the items of interest are mappings
among the objects. The two worlds are connected by a representation function that maps
from concrete to abstract.

i labstract objects - map - > Jabstract objectsiT 1'
representation representation

(concrete objects - map > lconcrete objectsi

A data-abstraction theory must define correctness, intuitively the property that the concrete
maps programmed do properly mirror the abstract maps in our minds. A theory following
Hoare's example also defines a proof method, a means of establishing the correctness of any
particular module.

2. Functional Semantics of Modules

A denotational semantics associates a mapping with each fragment of a program, as the
meaning of that fragment. Denotational definitions are mathematically precise, but do not
always obviously capture the intuitive meaning of programs. In this paper we do not
demonstrate that our denotational definitions agree with operational intuition, although that
argument can be given [7]. We treat only a subset of Pascal needed for the example of
Section 4.

* The most fundamental meaning function is the state, mapping program identifiers to
their value sets. This function may be undefined when an identifier has no value; the
situation can arise for syntactically correct programs only in the execution interval between

2

,-...,-. -. -. ... % --.., *. . , ,. .- ,; ,, .-. ' ,, ,. '% ,.,.' ,.., '. ' ' . ' .,.., , ... , ; .. ' _. .:,

declaration and assignment of the first value.

Expressions have as meaning mappings from states to values. The meaning of an
integer constant in state S is the (mathematical) integer whose representation in base 10 the
constant is (as a string). The meaning of an identifier V in state S is its value, that is, S(V).
On this base the meaning of integer expressions can be defined inductively. If the expresion
is X + Y, then in state S its value is the value of X in state S plus (integer addition) the
value of Y in state S. It is convenient to have a notation for meaning functions, and we
adopt a convention similar to one used by Kleene: the meaning function rsponding to a
pr Aamming object is denoted by a box around that object. Using this notation, we have

for integer constant c is the constant function for which c represents the base-10
value.

.I (S) = S(V) for identifier V and state S.

.x+ (S) - (S) + 1 (S)

(and similarly for subtraction, multiplication, and integer division).

For Boolean expressions it is almost the same. For example,

X > (S) isrue iff (S) > i14 (S) and false iff 14 (S) .Y (S).

Since it is possible for the value functions on identifiers to be undefined, expression functions
*may inherit this property.

This inductive definition hides the parsing that must actually be done to assign a
meaning function to an expression. In an expression with more than one operation, the
operator precedence must be followed in applying the definition. The use of the
mathematical operations in these definitions ignores the possibility of overflow. A precise
definition could be given for any particular Pascal implementation, but it would complicate
am prots.

Program statements are given meanings of state-to-state mappings. The meaning of
assignment

V:=E

SSv :- Is, T S except that (=f (S) .

3

The meanings of other program constructions are inductively defined; for example

A; B FAI1o TB-

where o is functional composition, written in the order the functions are applied. (Again, the
*21 parsing necessary to isolate the compound statement is ignored.)

A more complex example is

-IF B THEN u = (uli (u)): 14 (u) (u, u): - 1 (U)I

" for the conditional statement with Boolean expression B and nested statement S.

7Te loop has a less obvious definition:

WHILE ID = (T, U): k2 0, such thatVO V0 i < kA. -N k^) A 11jk = U

In words, the loop function is undefined for state S unless there is a natural number k (the
number of times the loop body is executed) for which the test fails for the first time following
k iterations. Then S is transformed to the k-fold composition of 4 on S. This definition is
not constructive, So a characterizing theorem is needed to allow practical proofs to be carried
out. It is:

THEOREM (WHILE statement Verification): Let W be the program fragment

"-" WHILE B DO D.

3 Then

f=I

if and only if:

- 1. domain(f) c domain(]I)
2. f(T) = T whenever - BIj(1
3. f IFB THEND of.

(The proof is given in [7].) This theorem implies a proof method for loop W as follows:
- Iut, guess or work out a trial function f, say by reading program documentation, or by

examining representative symbolic executions of W. Then use the three conditions of the if-
part of the theorem to check that the trial function is correct.

A comparison between this method and that of Floyd/Hoare is revealing. The function
f corresponds to the Floyd/Hoare loop assertion, but unlike an assertion, it must be exact, it
cannot merely be sufficiently strong to capture necessary properties of the loop. This is both

e, 4
.

L , . L', ", ". t ., - , ' l " -r " i ,,

the strength and weakness of the Mills method, because exact f dnctions are sometimes easier
to find than assertions, yet sometimes much harder to work with than weak assertions.

The definition of statement meaning culminates with the prcedure-call statement: the
meaning function of a call is the function for the declared body, after textual substitutions
(based on the ALGOL 60 copy rule) have been made to accommodate parameters and
identifier conflicts. When there is one VAR parameter X in the declaration of procedure P,
whose body is T, the meaning of a call on P passing parameter A is:

P = T:X-A

where T:X-A means that each occurrence of X in T is replaced by A. Students of ALGOL
60 will recognize the semantics of call-by-name; in the absence of arrays this is the same as
Pascal's strict call-by-reference. A similar copy-rule substitution can be used to define the
meaning of call-by-value parameters. This definition hides a great deal of parsing: to find
the meaning of P (A) actually requires locating the definition

PROCEDURE P(VAR X:)

and extracting the declared body.

In practice it is convenient to calculate the meaning of a procedure in terms of its
formal parameter and for each call later substitute the actual parameter identifier. Tht is,
to calculate) = T:X+-A , instead calculate M :X--A.

The definition assumes there are no conflicts between local and global identifiers; its
generalization to multiple parameters is straightforward if there is no aliasig. Each
restriction imposed for simplicity can be lifted (and call-by-value parameters handled) in the
Mills theory, in contrast to the FloydVHoare theory. When there is recursion, the definition
leads to a fixed-poimt equation whose least solution is the defined meaning, and a theorem
smilar to the WHIE verification theorem is needed for practical proofs.

The meaning function for a procedure call gives precise form to the concrete portion of
the diagram for a data abstraction. The concrete objects are states, and the concrete mappng
is the meaning function for a procedure call. The abstract level is more difficult to capture.
Its objects and transformations are mental constructions, things a programmer finds
convenient to think about. A mathematical theory is seldom available to describe them.
There are, however, well defined identifiers and states in the abstract world, formed using
type identifiers in place of their component identifiers. The final element in the picture is the
corresponde between a typical concrete object and its abstract counterpart, the
representation function. This mapping is often many-to-one, because the concrete realization
is not unique.

In the data-abstraction diagram:

5a

V..I -

4r7

"abstract states i m > abstract states+

A A

fconcrete states i -- > Jconcrete states

the abstract mapping is m, the representation mapping is A, and the concrete mapping is the
meaning of some procedure P. We say that the diagram commues iff beginning in the lower
left comer and passing in both possible directions always gives the same result, that is A o m

p ,.

3. Proof Method

When using a module, a programmer begins with objects that are not of the module's type.
These may have come from the external world, or may have been created internally. They
cannot be of the module's type because details of the representation are the module's secret.
What the programmer possesses is raw information necessary to construct a value of the
module type, and the first call on a module is therefore a conversion call: the calling program
passes the component information, and within the module it is placed in the secret internal
form. Succeeding invocations of the module make use of the value thus stored, transforming
it according to the operations defined within the module. Finally, the transformed value must
again be communicated to the world outside the module, converted back to externally usable

Ol form. For example, in a module implementing complex numbers, the raw data might take
the form of two REAL values, one for magnitude and the other for angle. The COMPLEX
module's input conversion routine would have a declaration like

PROCEDURE InComplex(Mag. Ang: REAL; VAR Vat: COMPLEX)

and a pogrammer might begin by reading in the pair of REAL values, or by creating them
(e.g., for the constant i with:

S:"InComplex(1.8. pi1/2, Ee)

to place the result in the variable Ewe). Similarly, a routine declared

PROCEDURE OutComplex (VAR Mag. Ang: REAL; Val: COMPLEX)

S would be called to obtain answers, while ones like

PROCEDURE AddComplex(A, B: COMPLEX; VAR Result: COMPLEX)

would implement operations of the type. Of course, if the implementor chose the radix form
for complex numbers internally, the code for I rComp I ex and OutComp I ex would be trivial;
however, if there is a great deal of addition and not much conversion, an implementation
using real and imaginary parts would be better, and in that case these routines make actual

6
I .

I ---

conversions.
r

In any application of a module, its users will reason about its actions "in the abstract.
That is, they will imagine it performing a mapping involving objects that do not really exist,
those of the intuitive type it implements. For example in COMPLEX, they will think of
Adctomp I ex as performing the mathematical operation of complex addition, etc. Here the
input- and output-conversion operations have a special role: they are thought of as maps
between the built-in language values and the intuitive values of the type being defined. Thus

InComplex(1.8. pi/2, Eye)

-'-"intuitively gives Eye the value 1.Oxe i7 2 = i. The reasoning represented by this equality is
an example of "in the abstract:" it in no way depends on the implementation of the module,
only on mathematical properties of complex numbers.

The objects whose values are the raw data from which type values can be constructed,
exist in the concrete world, which for these objects is also the abstract world. That is, the
representation function for such objects is required to be identity. If the abstract function for
the input conversion of COMPLEX is C, the diagram is

iconcrete statesi C -> abstract states i

I IA

-concrcte statesi - InComp ex -> concrete states i

showing identity on the left instead of the representation mapping. Or, the left side could be
collapsed to identify the two worlds, producing a triangular diagram. Here for example:

7- ' 1abstract states J
1;1

". -"C .A

Iconcrete statesi - I I nComE Iex -> Iconcrete statesi

Thus the programmer has in mind abstract functions for each operation of a module.
These map between values of the module's type, and other values that may be built in, or
defined by other modules. In reasoning about the program uing a module, the programmer
will employ these abstract functions. Intuitively, the module implementation is correct if and

*only if such reasoning is safe. In terms of the operation diagrams, a sequence of operations is
thought of on the top: beginning with a triangular diagram whose left side does not involve
objects of the module's type T, an object of type T is created by the abstract operation InT,
then used by abstract operations m T mT ... and finally converted back to known values
by (another triangular diagram) OuitT. The abstract view of this sequence of diagrams is that
non-module values are transformed to other non-module values by the function

7:.-*

InTomlTom 2T o ... o OutT

* with the intermediate values being the abstract ones of the module's type.

Of couirse, the actual calculation proceeds across the bottom of the diagrams. The
)-- implementation begins with values and successively transforms them, at no time leaving the

-. ". bilt-in types of the langage. If the procedures for the example functions above are PI nT,
Pml, Pni2, ... , POutT, the actual function computed in the sequence is

• PInT on ml F oP m o... o ot .

* - Correctness then means that any extended diagram, a sequence with triangular diagrams at
" the extremes, commutes. That is, in the general example above,

InT o mlTom 2To.. o utT= IPInT o P 0 M2o ... o P utT

The strange feature of this defining equation is that the representation function does not
.. appear!

To be useful in software development, however, proofs must apply to operations in
isolation, not to sequences of operations. The following theorem allows such proofs to be
given.

Im THEOREM. A module's implementation is correct if there is a representation function A such
that each operation's diagram commutes using A, and A is the identity I on built-in types.

. Proof. Without loss of generality, assume that the module in question makes no use of other
modules. (Ths must be true of the lowest-level module, and its use by others can be thought
of as adding "hidden" operations to them.) The proof is by induction on the number of
operations in a sequence between the input- and Output-conversion operations.

Base case. If there are none, the extended diagram consist of the input-conversion

function immediately followed by the output-conversion function:

lconcrete states - InT-> labstract states I - OutT-> concrete states I

I A I

fconcrete Statms - P~T-> concrte states- PuT- concrete states

In the notation above, we must show that

"'" InT o OutT= P o PmutT

S•Pe it were not so, for the point x, i.e.,

8
-

m.5

OutT(InT(x)) W ~t Pn x).(. '

The diagram for the input-conversion function commutes, and a special case is

MT(x) = A(n),.

*. which substituted on the left side above gives:

OutT(A(n (x))) P (P (x)).

That is, there exists a y n (x) such that

OutT(A(y)) P~utT (y).
. /

But this violates the assumption that the diagram for the output-conversion function
commutes. Hence the two diagrams commuting imply that the extended diagram commutes,
as required.

Induction step. Suppose then that for all diagrams with less than k > 0 operations
- between input and output conversions, the component diagrams commuting implies that the
.* overall diagram commutes. Consider a diagram with k operations between conversions.

Reasoning similar to that used in the base case shows that if the extended diagram fails for
some point x, then the diagram formed by stripping off its last operation would also fail for x.
But that contradicts the inductive hypothesis. QED.

The verification of a module may therefore be accomplished in isolation by selecting a
proper representation function, calculating the meaning of each procedure, and then showing
that each operation's diagram commutes for the intended abstract function, calculated
meaning, and chosen representation function.

4. An Example: Rational Numbers

. A Pascal TYPE declaration is an implicit form of the representation mapping. For example,

TYPE Rational = RECORD Num, Den: INTEGER END

suggests the abstract world of rational numbers, where concrete states contain pair of integer
values (N, D), and the corresponding rational value is the fraction with numerator N and
denominator D, defined only if N and D 0 are defined The representation mapping Arat
from concrete state S to abstract state T is thus

Arat = J(S,): T = S except that identifiers of the form x.Num and x.Den are replaced
Sby x, with the crresponding rational value if x.Den 0j

9

,. __

,.. ::.,. •,* * * * * -

The procedure ExpRat given below is intended to raise a rational number R to the
* power N. The comment describes this intention in the abstract ("abs") and concrete ("con")

worlds. The comment notation combines concurrent assignments with alternative relational
guards to describe functions in the syntax of programs. For example, the "abs" part would be

4 more conventionally expressed:

;-.Exlp atabs = J(S, 7): JEJ (S) -t 1 A T =S except that] (7) = (S) M Si

-u I(s, S): 4 (S) < 11.

* UnSimilarly, the "con" comment describes Ex Rat

PROCEDURE ExpRat(VAR R: Rational; N: INTEGER);
labs: (N>=1 -- > <>:= Th**N>) I(N< - :)
con: (N>=1--> <c.Num, R.Den> := <.Num,-N, R.Den*N>)

(Nd -- >0 :< c>)
VAR

T: Rational;
I: INTEGER;

BEGIN jExpRat?
T.Num := R.Num; T.Den := R.Den;
I:1;
WHILE I < N
DO

BEGIN
I := I +1;
T.Num := T.Nuni * R.Num;
T.Den := T.Den * R.Den

,. END;

R. Num := T. Num; R. Den := T. Den
END JExpRatI

To demonstrate the correctness of this procedure, we must calculate E Rat (see
Appendix), and prove that the following diagram commutes:

fabstract statesi -ExpRatab s - > jahstract states
~Tr

ArM A rat

fconcrete statesl - ExRat -> oxm'ret statesi

TIhat is, on dornain(Art):

Ar o ExpRatabs = Exaat oArm-

10

... -,- -. - .. % ," '" . , .- ,-.. ,.#-,., ,- d Fe'i ,'ed * -'*.;.te ¢. £ : '.." -W "'.7,. ".

The composition of Arai with ExpRatabs is:

(R.Den 8 -, <q> := <f?.Num/R.Oen>) o
(N =-1 -+9 > <= N N>) (N <I - 11 ..->))

The trace table 18] is a device for organizing the calculation of program meanings,
particularly useful when there are many cases introduced by conditional statements. It is
esentially a symbolic execution of the program. Two trace tables, corresponding to the two
cases of ExpRatabS. are used to compute the composition:

par t condi t ion R R. Nun R. Den

Arai R. DenQ R.Num/R.Den

ExpRatab N L 1 (R.Nuni/R.Den)**N "

part condition R R.Nuni !R.Den

Art R. Den R.Nuni/R.Den -rat.

ExpRatabs N < 1

The resulting function is:

(R.DenA AND N. -, R><9> < (R.Num/R.Den)**N >)
(R.ODen? ANDN4 -1 :=).

The composition of ERat with Ar0 is:

(>1 -, <q. Num, R. Den> :<. Num**N, R.Den**N>)
(N< - <> :)) o (R. Den x 0 -+ :> :F. Num/R. Den>)

Two trace tables are also used to compute this composition:
__ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ _ R.Num __R.Den__'

part condition R_ _ _

Ept7 N R.NumoIcN R.Den* N

SAra R. Deno*N R. Nuni**N/R. Oen**N

Since R. Den**NA implies R. Dens, this part of the composition can be rewritten as:

NM__ AND R.DenxO -, <q> := < R.Num**N/R.Den**N > V.

Turning to the second case, we have the following table:

11-

r

par t cond i t ion R 'R. Num 'R. Den

Ara R.OenA R.Nui/R.Oer

Thus the result of the second function composition is:

A (NP_ AND R. Denx -< < R. Num*NN/R. Den**N >
(Nd AND R. enx -< 9> "= < R.Num/R. Den >)

which is identical to the first composition. Hence the diagram commutes, and ExpRat is
correct.

.-

5. Comparison with Related Work

* .. Just as the Mills method of program proof is closest in spirit to that of Howe, so this
treatment is little more than the application of denotational-semantic definitions to Hoare's
initial formalization of SIMII.A classes. However, we believe that the choice of the
concrete and abstract domains as sets of states containing variables connected by the
representation mapping is an improvement over the Alphard methodology which is also based
on Hoare's work. The states allow the representation to include not only the value
correspondence, but an identifier correspondence as well. When a data abstraction is used,
the calls on its operations occur in states that include the abstract variables, and our proof
method allows the abstract function whose correctness has been established by the proof of a
module to be used directly in such a state.

In the Aiphard methodology things do not work quite so well. For example, consider
the procedure ExpRat proved in Section 3. In Alphard terms, its abstract pre- and
postconditions would be

6pre = R=R' and #post= R=R'*ON

where the ghost variable R' has been introduced to represent the initial value of the
parameter. The concrete input and output assertions are similarly:

- 1in -R lNuin = R.Num" A R.Den = RDen'

" out =- R.Num = R.Num" ** N A R.Den = XDen" ** N

- with ghost variables R.Num" and R.Den'. Proof of a usage requires

c(x) A in(X)

where C is the concrete invariant and A the representation function. With the invariant
S R.Den o 0 thisi

12

II,"I - "" ", , " -N % "" ' " ''_ •% " '"" ' ' " . 's ' "

RIDen 0 A R =R R.Num= R.Num' A R.Dn =R.In'

which cannot be proved, since the concrete representation is not unique. Nor can the
invariant be strengthened to allow the proof. The trouble is that the correspondence between
abstract and concrete state is not precise enough to pull implications about the latter from
facts about the former.

References

1. O.-J. Dahl, B. Myhrhaug, and K. Nygaard, The SIMULA 67 common base language.
Norwegian Computing Center, Oslo, Publication Nr. S-22, 1970.

2. C. A. R. Hoare, Proof of correctness of data representations, Acta Informatica 1 (1972),
pp. 271-281.

3. W. A. Wuif, R. L. London, and M. Shaw, An introduction to the construction and ..
verification of Alphard programs, IEEE Trans. Software Engineering SE-2 (1976), pp. 253-
265.

4. J. Guttag and J. Homing, The algebraic specification of abstract data tpes, Acta
Informatica 10 (1978), 27-52.

5. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial algebra semantics
and continuous algebras, J. of the Assoc. for Comp. Mach. 24 (1977), pp. 68-95.

6. R. G. Hamlet and H. D. Mills, Functional semantics, University of Maryland Computer

Science Technical Report 1238, 1983.

7. Ibid., Functional Analysis of Programs, in preparation.

8. Linger, R.C., Mills, H.D., and Witt, B.I., Structured Programming: Theory and Practice,
Addison-Wesley, 1979.

Appendix

To determine ExIa , we compose the functions computed by the three initial assignment
statements, the WHIE statement, and the two final assignment statements.

(<I, T.Num, T.Den> := 4, R.Num, R.Den>) o
((14 -, <1, T.Num. T.Den> :=

(N, T.Num*R.Num**(N-I), T.DenR.Num**(N-I)>) I
(I >-N -+0 := >)) o

(49.Num, R.Den> :- <T.Num. T.Den>)

The result of the composition is: .

13

- 7

*. ,-. ((14N- <J, T.Num, T.Oen, R.Num, R.Oen> :=
<, R.Nuni*R.Nuni**(N-1), R.Oenw*R.Den**(N-1),

R.Num*R.Numn**(N-1), R.Den*R.Den**(N-1)>) I
(1>N -, <I, T.Num, T.Den> := 4. R.Num. R.Den>)

Simplifying and ignoring the effects on local variables yields the function:

((144 -* 4.Num, R.Den> <R.Numn**N, R.Num**N>) I
(1>=N -, < :=)

This is identical to Ex Rat

.(N>1 -, <.Num, R.Den> =<R.Numn*N, R.Den* N>)
(N4 -,, := <A

since for N=1, R.Num = R.Num**N.

The functions for the sequences of assignment statements were obviously chosen
- correctly. However, we still must establish the correctness of the function chosen for the

WHILE statement.

. WHILE I < N
DO j (I <N -- > <I. T.Nuni, T. Den> .-

<N, T.Num*R.Num,*(N-I). T.DenR.Den**(N-I)>)
(I>=N -- > :=)

BEGIN
I + 1;
T.Nuni := T.Nun R.Num;
T. Den : = T. Den R. Den

END;

Using the WHILE Statement Verification Theorem, the intended function F, which appears
as a comment on the WHLE statement, and WHIF I < N DOS are identical if:

1. donmain(F) c domain(WHILE I < N DO)

2. F(= T whenever- I < N(T)
* 3. F= IF I <N THENS oF

The domain of F is:

L I<N OR I,-.N = true

.. If IN, the WHILE statement is skipped so termination is assured. If I<N, the WHILE
statement is executed, I is incremented, and the eventual termination of the statement is

14

, %,W) %+,, . ' .*'~))w% ',% %' '' w ' ,+'. . ,* *.*p+~~w

assured because the value of I approaches N. Thus the first condition is satisfied.

The second condition requires F to be the identity if the WHILE condition does not
hold. This is exactly the final case in the definition of F.

Finally, we can work out the right side of the third condition. The function of the IF
statement

IF I <NDO S

is

(I<N - <IT.NuniT.Den> <I+1.T.Num*R.NuniT.Den*R.Den>)
(I2:N -+ o: o

• I-

"Thecomxosition IF I < N THENS oFis:

((1N -, <I,T.Num,T.Den> <I+1,T.Num*R.NumT.Den*R.Den>)
(IN -+ := -)) o

(I<N -, <IT.Num.T.Den>
<14N, T.NumnR.Num**(N-I), T.Den*R.Den**(N-I)>) I

;."(I N -> <=)":

*" There are four cases to consider.

Execution Table 1

Part Condition I T. NuM T.Den

IF I <N 1+1 T.Num*R.Nuni T.Den*R.Den

F 1 +144 N 1T.Num*R.Num*R.Nu1 T.Den*fR.Den*R. Den
. .: j wo (N- I~i) ** (N-I +I)) .

Simplifying some of these expresions yields:

.<N AND 1+1<N = 1+<144
T.Num*R.Num*9.Num* (N-(I+1)) = T.NumwoR.Num(N-I)
T.Den*R.DenidR.Der** (N-(I+1)) = T.DenioiR.Den(N-I)

Thus this art of the composition is:

I+14 - <I,T.Num,T.Den> := <N,T.NumR.Numn**(N-l),T.Den*R.Den**(N-I)>

a

15 .,

r-

Pr CndtoExecution Table 2

Part Condition I T.Num T.Den

IF I I+1 IT.Num*R.Num T.Den*R.Den

F I+1 N

The condition is:

I<N AND I+14 = I+1=N

*For I+1=N, we observe:

T.Num*R.Num*o*c(N-I) = T.Num*R.Num
T.Den*R.Den*oic(N-I) = T.Den*R.Den

. TIhus this part of the function is:

I+1=N - <I.T.NumT.Den> 44,T.Num*R.Num**(N-I).T.Den*R.Den*(N-I)>

Execution Table 3

Part Condition I T. Num i T.Den

IF IN

F I<N :N T.Num*R.Num*ogc(N-I) T.DenR.Den*oic(N-I)

The condition I AND 14 cannot be satisfied, so this part contributes nothing to the
conipostion.

Execution Table 4

Part Condition I T.Num !T.Den

IF l N

F I N

Thus this part of the function is:

UlaN -+ : <>-o

Putting the four part functions together:

16

(I+I NJ -- <I,T.Num, T.Den>
41.JT.Num*R.Num,* (N-I). T.Den*R.Den**(N-I)>) I

(IN -, > := C)

Since I +1.N = I4, the composition o the four part functions is identical to F,
estabishing the third condition.

17.

i'.. .

. '

v.'. 17 "

** * * t

CE \RT LSSIFTION OF THIS PA

* REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED _______________________

F& 2a SCUR ITY CLASSIFICATION AUTHORITY 3 DIST RIBUT ION/ AVAJLABIUTY OF REPORT

Approved for public release; distribution
DECLASSIFICATION i DOWNGRADING SCHEDULE ulmtd

* *ERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR CS/E 84-005 A SRT.84-0,879
S NAME OF PERFORMING ORGANIZATION bb OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1 (f Applicable)

University of Maryland j________Air Force Office of Scientific Research
ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

£Department of Computer Science Directorate of Mathematical & Information
College Park MD 20742 Sciences, AFOSR, Bolling AFB DC 20332

NAME OF FUNDING I/SPONSORING G b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J(if applicable) F92-0C00
A:- FOSR F92-0C00

*ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS:1PROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332 ELEMENT NO. NO. NO. ACCESSION NO.

61102F 2304 A7j1. TITLE (include Security Classification)
FUNCTIONAL SEMANTICS OF MODULES

2. PERSONAL AUTHOR(S)
Dick Hamlet*, John Gannon, and Harlan Mills

3a. TYPE OF REPORT 13b. TIME COVERED To4 DAEO EPR Yar ot. a)I. PAGE COUNT
STechnical FROM TOISEP 84 I 17
S. SUPPLEMENTARY NOTATION
*Dept of Computer Science, Oregon Graduate Center, Beaverton OR 97006.

7. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary adidentify by block number)
FIELD GROUP SUB.GROUP

9. ABSTRACT (Continue on reverse if necessary and identify byv block number)

Because large-scale software development is a struggle against internal program complexity,
the modules into which programs are divided play a central role in software engineering. A
module encapsulating a data type allows the programmer to ignore both the details of its
operations, and of its value representations. It is a primary strength cf program proving
that as modules divide a program, making it easier to understand, so do they divide its
pr-oof. Each module can be verified in isolation, then its internal details ignored in a
proof of its use. This paper describes proofs of module abstractions based on the functional

* method of Mills, and contrasts this with the Alphard formalism based on Hoare logic.

20 ST11I111TION, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
I*CLASSIFIEOnJNLIMITED 0 SAME AS RPT O3DTIC USERS t.~T~

22& FME Of RESPONSIBLE INDIVIDUAL 22b TELEDHONE (Include Are& Code)22c. OFFICE SYMBOL
Dr. Robert N. Buchal '0) 7F.7-4939

./..DO M 1473.84 MAR 83 APR edition may be used until exhausted SCRTCLSICAONOTHSPAGE
*All other editions ore obsolete SCRT LSIIAINO HSPG

UrICLASSIF:E

4A

J,('

y.l? It,

1 17

0f

